首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1460篇
  免费   298篇
  国内免费   54篇
测绘学   137篇
大气科学   136篇
地球物理   850篇
地质学   316篇
海洋学   88篇
天文学   7篇
综合类   34篇
自然地理   244篇
  2024年   5篇
  2023年   14篇
  2022年   17篇
  2021年   78篇
  2020年   121篇
  2019年   50篇
  2018年   62篇
  2017年   85篇
  2016年   68篇
  2015年   73篇
  2014年   101篇
  2013年   158篇
  2012年   51篇
  2011年   68篇
  2010年   53篇
  2009年   55篇
  2008年   88篇
  2007年   79篇
  2006年   84篇
  2005年   53篇
  2004年   52篇
  2003年   70篇
  2002年   59篇
  2001年   32篇
  2000年   34篇
  1999年   27篇
  1998年   22篇
  1997年   18篇
  1996年   11篇
  1995年   14篇
  1994年   18篇
  1993年   15篇
  1992年   16篇
  1991年   5篇
  1990年   17篇
  1989年   6篇
  1988年   3篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1812条查询结果,搜索用时 31 毫秒
1.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
2.
Sentinel-2卫星落叶松林龄信息反演   总被引:1,自引:0,他引:1  
林龄结构信息能够有效反映区域森林群落不同生长阶段的固碳能力,对于评估森林生态系统的健康状况具有重要意义。本研究以中国温带典型优势树种落叶松林为研究对象,分别选择其芽萌动期、展叶期和落叶期时段的Sentinel-2影像,采用多元线性回归(MLR)、随机森林(RF)、支持向量机回归(SVR)、前馈反向传播神经网络(BP)以及多元自适应回归样条(MARS)等5种方法依次构建落叶松林龄反演模型。通过相关性分析首先确定最佳遥感反演物候期,并在此基础上根据相关性差异筛选出5个最优特征变量用于模型反演,分别为冠层含水量(CWC),归一化水体指数(NDWI),叶面积指数(LAI),光合有效辐射吸收率(FAPAR)和植被覆盖度(FVC)。研究结果表明,展叶期为落叶松林最佳遥感反演物候期。除植被衰减指数(PSRI)以及落叶期的NDVI、RVI外,落叶松林龄与各指标之间均呈负相关关系,其中与冠层含水量(CWC)的相关性最高,pearson相关系数达到-0.74(p<0.01)。此外,不同模型反演结果表明,随机森林模型(RF)为最佳落叶松林龄估测模型,其平均决定系数R2和平均均方根误差RMSE分别为0.89和2.91 a;多元线性回归模型(MLR)的林龄估测结果最差,其平均决定系数R2和平均均方根误差RMSE仅为0.57和5.69 a,非线性模型能更好的解释林龄与建模变量之间的关系。  相似文献   
3.
方立  冯缠利  郑宝旺  沈国庭 《地下水》2020,(1):152-154,266
2018年伏秋汛期黄河流域上游持续来水,为保证2108-2019年度黄河流域凌汛期安全,黄河流域重点水库进行了大流量持续下泄。以2018年9月的实际数据为基准,通过对重点水库实际日均出入库调度情况,内蒙古河段的重点水文站实际日均流量过程和三个年份汛期大断面套绘成果对比分析研究,可以得出水库大流量持续下泄对内蒙古河段河道塑形能力起到了关键性作用,有效的提高了主槽过流能力,河段最小平滩流量得到一定的恢复,对下一步研究黄河流域河道过流能力提供了有利的数据支撑和参考价值。  相似文献   
4.
Ning  Like  Zhan  Chesheng  Luo  Yong  Wang  Yueling  Liu  Liangmeizi 《地理学报(英文版)》2019,29(3):465-479
Journal of Geographical Sciences - The terrestrial hydrological process is an essential but weak link in global/regional climate models. In this paper, the development status, research hotspots and...  相似文献   
5.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   
6.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   
7.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
8.
Information on tree species composition is crucial in forest management and can be obtained using remote sensing. While the topic has been addressed frequently over the last years, the remote sensing-based identification of tree species across wide and complex forest areas is still sparse in the literature. Our study presents a tree species classification of a large fraction of the Białowieża Forest in Poland covering 62 000 ha and being subject to diverse management regimes. Key objectives were to obtain an accurate tree species map and to examine if the prevalent management strategy influences the classification results. Tree species classification was conducted based on airborne hyperspectral HySpex data. We applied an iterative Support Vector Machine classification and obtained a thematic map of 7 individual tree species (birch, oak, hornbeam, lime, alder, pine, spruce) and an additional class containing other broadleaves. Generally, the more heterogeneous the area was, the more errors we observed in the classification results. Managed forests were classified more accurately than reserves. Our findings indicate that mapping dominant tree species with airborne hyperspectral data can be accomplished also over large areas and that forest management and its effects on forest structure has an influence on classification accuracies and should be actively considered when progressing towards operational mapping of tree species composition.  相似文献   
9.
随着互联网产业的飞速发展,电子商务开始进入农业领域。以电子商务起步较早的"洛川苹果"作为研究对象进行调研。基于随机森林模型的决策树集成算法,对农业网络销售体系整体进行数据分析,模型构建,从问题表象出发挖掘其在不同部分的影响因子,最终基于影响因素解决问题,提出合理化建议:加强农村基础设施建设、健全农村公共服务体系以及完善农村电子商务培训制度等,因地制宜,推进农业电子商务的健康发展。  相似文献   
10.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号